Stieltjes Polynomials and the Error of Gauss-kronrod Quadrature Formulas

نویسنده

  • Sven Ehrich
چکیده

The Gauss-Kronrod quadrature scheme, which is based on the zeros of Legendre polynomials and Stieltjes polynomials, is the standard method for automatic numerical integration in mathematical software libraries. For a long time, very little was known about the error of the Gauss-Kronrod scheme. An essential progress was made only recently, based on new bounds and as-ymptotic properties for the Stieltjes polynomials. The purpose of this paper is to give a survey on these results. In particular, the quality of the Gauss-Kronrod formula for smooth and for nonsmooth functions is investigated and compared with other quadrature formulas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stieltjes Polynomials and Gauss-kronrod Quadrature

Let D be a real function such that D(z) is analytic and D(z) ± 0 for \z\ < 1. Furthermore, put W(x) = \J\ x2\D(e'v)\2 , x = costp , tp e [0, 71 ], and denote by pn(', rV) the polynomial which is orthogonal on [-1, +1] to Pn_[ (P„_! denotes the set of polynomials of degree at most n 1 ) with respect to W . In this paper it is shown that for each sufficiently large n the polynomial En+X(-, W) (ca...

متن کامل

Stieltjes-type Polynomials on the Unit Circle

Stieltjes-type polynomials corresponding to measures supported on the unit circle T are introduced and their asymptotic properties away from T are studied for general classes of measures. As an application, we prove the convergence of an associated sequence of interpolating rational functions to the corresponding Carathéodory function. In turn, this is used to give an estimate of the rate of co...

متن کامل

Stieltjes-type polynomials on the unit circle

Stieltjes-type polynomials corresponding to measures supported on the unit circle T are introduced and their asymptotic properties away from T are studied for general classes of measures. As an application, we prove the convergence of an associated sequence of interpolating rational functions to the corresponding Carathéodory function. In turn, this is used to give an estimate of the rate of co...

متن کامل

A historical note on Gauss-Kronrod quadrature

The idea of Gauss–Kronrod quadrature, in a germinal form, is traced back to an 1894 paper of R. Skutsch. The idea of inserting n+1 nodes into an n-point Gaussian quadrature rule and choosing them and the weights of the resulting (2n+1)-point quadrature rule in such a manner as to maximize the polynomial degree of exactness is generally attributed to A.S. Kronrod [2], [3]. This is entirely justi...

متن کامل

Error Bounds for Gauss-kronrod Quadrature Formulae

The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998